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∗Ericsson Research, Germany, {alex.palaios, philipp.geuer}@ericsson.com
†Fraunhofer Heinrich Hertz Institute, Germany, {firstname.lastname}@hhi.fraunhofer.de

‡BMW Group Research, New Technologies, Innovations, Germany, daniel.kuelzer@bmwgroup.com
§Vodafone Chair, Technische Universität Dresden, Germany, {firstname.lastname}@tu-dresden.de

¶Technische Universität Kaiserslautern, Germany, {partani, sattiraju, weinand, schotten}@eit.uni-kl.de
‖Deutsche Telekom Chair, Technische Universität Dresden, Germany, {firstname.lastname}@tu-dresden.de

∗∗Network Information Theory Group, Technische Universität Berlin, Germany

Abstract—In the future, mobility use cases will depend on
precise predictions, with Quality of Service (QoS) prediction being
a prominent example. This paper presents realistic measurements
from today’s vehicles to support robust QoS prediction in the
future. Based on a dedicated and controlled measurement cam-
paign, we highlight aspects of the wireless environment and the
device characteristics, like the sampling rates, that influence the
collected datasets. If not properly handled, such characteristics
might hinder the performance of Artificial Intelligence-based
algorithms for QoS prediction. Therefore, we also provide insights
on dataset characteristics that should be further used to enable
easier adoption of AI-based algorithms. New AI-based algorithms
should be able to operate in very diverse radio environments with
data captured from different devices. We provide several examples
that highlight the importance of thoroughly understanding the
datasets and their dynamics.

Index Terms—Artificial Intelligence, Machine Learning, Quality
of Service Prediction, E2E Measurements, Network Dynamics

I. INTRODUCTION

Artificial Intelligence (AI) is expected to greatly enhance the
efficiency, flexibility, and proactivity of modern communication
systems [1]. By leveraging Machine Learning (ML) methods,
AI can learn from experience and solve problems without
being explicitly programmed. Replacing conventional wireless
design concepts with ML mechanisms is a promising means
to handle the ever-increasing complexity of today’s networks
[2]. ML techniques are enablers for the automation of network
functions, ensuring efficient management of network resources
and flexibility to meet user demands [3].

In recent years, a variety of new use cases have emerged
in the field of vehicular communications, including connected
autonomous driving, platooning, cooperative maneuvering, tele-
operated driving, and smart navigation [4], [5]. Each of these
use cases has individual Quality of Service (QoS) requirements,
including data rate, latency, or reliability constraints [4], which
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must be satisfied to ensure safe operation. In wireless applica-
tions with high mobility, QoS metrics can change drastically
within short time periods [6]. This calls for a QoS prediction,
which allows the application to adapt proactively to such
changes.

Because QoS parameters are influenced by a vast diversity
of factors, their prediction usually relies on ML methods.
However, these methods are highly dependent on the training
datasets, and imbalanced or insufficient data might severely
degrade the QoS prediction’s performance. Therefore, data
generation, selection, and pre-processing need to be designed
very carefully.

Owing to the complexity of wireless systems, measurement
campaigns do typically not capture all relevant features influ-
encing certain QoS parameters. This work aims at overcoming
some limitations of previous studies by conducting a measure-
ment campaign with a broad scope in a highly controllable
cellular network. We collected data from the network and User
Equipment (UE) under different measurement scenarios with
high temporal resolution. Different traffic types and patterns
as well as diverse levels of background traffic are employed,
for both vehicle-to-network-to-vehicle and vehicle-to-network
communication.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the state of the art in data generation for QoS
prediction. Section III describes the measurement campaign. In
Section IV we give an overview of selected results, looking
at data characteristics that are important for ML algorithms.
Finally, we draw conclusions in Section V.

II. STATE OF THE ART

Measurement campaigns for QoS prediction described in
the literature are often based on a single device type that
collects measurements over different areas and time periods [7].
However, the captured radio environment characteristics can
vary significantly with varying hardware characteristics, e.g.,
antenna types and placements. To which extent this influences
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the performance of ML models is still unknown, particularly
when such models should be used on different device types. In
many cases, the data sampling interval of the user equipment
is in the order of seconds (e.g., [8], [9]). Such low sampling
rates may be insufficient for use-cases with high mobility [10],
[6] where the terminal can experience drastically different radio
dynamics (e.g. while entering a tunnel).

Several measurement campaigns [11], [12] rely on stationary
measurement positions that do not capture precisely the radio
environment over different locations. It is known that the radio
environment can change drastically within a few meters [13].
Therefore, vehicular speed constitutes a critical parameter for
the accuracy of the QoS prediction. Several measurement
campaigns have been conducted with vehicles traveling up to
100 km/h (e.g., [6], [14]). While some authors have investigated
the impact of mobility on QoS metrics such as throughput (see,
e.g., [8]), the influence of vehicular velocity and the sampling
frequency on the feature distributions is still largely unknown.

Most studies rely on public networks. Such datasets incorpo-
rate unknown network dynamics that cannot be resolved easily.
This leads to an additional uncertainty factor that can limit the
effectiveness of ML algorithms [15]. Data collection typically
happens only at the UE side, resulting in a lack of network-
based information. There are a few exceptions where authors
have tried to estimate the network status, with an example being
the estimation of the base station utilization [10], [11]. It is
still an open question to what extent network-based information
can improve the performance of ML prediction algorithms [16].
Another limitation is that measurement campaigns are typically
conducted during similar time periods (i.e. working hours), with
multiple features being relatively stable, such as interference
that changes slowly over time [17].

While some studies (e.g. [11], [18]) use different traffic
patterns and protocols (Transmission Control Protocol (TCP),
User Datagram Protocol (UDP)) to account for different use
cases, the effects of Vehicle-to-Network (V2N) and Vehicle-
to-Network-to-Vehicle (V2N2V) communication have not yet
been studied together in one measurement campaign. Measure-
ments that capture more dynamic and complex environments
can provide a more in-depth understanding of the applicability
of ML and its capability to generalize on different radio
environments, compared to smaller-scale testbeds, as in [6],
[14]. As there is a relative lack of publicly available data, stud-
ies considering QoS prediction with multiple UEs, e.g., [19],
[20], typically resort to simulations. However, simulated data
suffers from imperfections (limited dynamics and stationary
distributions) that can lead to underperforming ML models.
To acquire real-world training data for predictions leveraging
measurements from other vehicles, e.g., using information from
a preceding vehicle to improve QoS prediction, measurement
campaigns with multiple vehicles are required.

With the measurement campaign described in Section III,
we aim to provide new insights on several aspects mentioned
above. We consider different mobility scenarios in highway, ur-
ban and rural environments with different measurement devices.

Fig. 1. The map of the areas where measurements took place. The segments of
the highway are highlighted with dark red, the rural and side street areas with
dark green. The blue frame highlights the suburb Feucht. The black triangles
are the base station cells, showing also the coverage direction.

The sampling intervals of the devices range from milliseconds
to seconds. Different traffic types and patterns as well as diverse
levels of background traffic are employed, for both V2N and
V2N2V communication. In addition to the mobile measurement
devices, we can access network information from the core and
base stations, and we are able to control interference caused by
cell load.

III. MEASUREMENT CAMPAIGN

Within this work, we aim to overcome the described limi-
tations in literature and capture information from all network
nodes at a fine granularity. The measurement campaign was
performed in the German 5G-ConnectedMobility test field1

over one week with four vehicles to span V2N and V2N2V
communication. In total, a distance of around 3300 kilometers
was covered. The network control allowed to investigate ar-
bitrary traffic patterns, regulate interference, and, e.g., recon-
struct live base station data. In the following, we describe the
measurement area, the network and measurement setup, and
introduce the considered measurement scenarios.

A. Measurement Area

The 5G-ConnectedMobility test field is located in the south
of Nuremberg, Germany. Figure 1 gives an overview of the
measurement area. The propagation scenarios comprised high-
speed highway driving, suburban commuting, and rural roads.
The highway measurements between Allersberg and the high-
way junction Nuremberg East, containing a distance of approxi-
mately 18 km of continuous highway section (highlighted in red
in Fig. 1) experienced special focus during the measurement
campaign. Moreover, two base stations covered the suburb
Feucht (framed in blue in Fig. 1), with an area of about 10 km2

and approximately 14,000 inhabitants. It is located close to the
highway and allows for suburban scenario measurements. Next
to the highway, rural roads connect the town of Allersberg
with Feucht, a diverse propagation environment with forests
and small towns in the countryside (marked in green in Fig. 1).

B. Measurement Setup

The mobile radio network is a private network covering the
test area with five base stations operating at 700MHz. As seen
in Figure 1, four base stations are positioned along the highway,

1http://www.5g-connectedmobility.com/
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and one base station is located in the suburban city of Feucht.
Each base station covers two cells resulting in good coverage
at a part of the A9 highway, Feucht, and the rural areas close
to the highway. The network employs Long-Term Evolution
(LTE)-Frequency Division Duplexing (FDD) with a respective
bandwidth of 10MHz. The base stations can also be configured
to enable artificial cell load. If enabled, a configured fraction
of downlink Physical Resource Blocks (PRBs) is loaded with
dummy data, resulting in increased interference, especially in
neighboring cells. Figure 2 depicts the network architecture and
our measurement methodology. The base stations are connected
to a core network, which is split between different locations.
The central cloud, including functionalities as Mobility Man-
agement Entity (MME) or Home Subscriber Server (HSS),
is located in Aachen, while Mobile Edge Computing (MEC)
provides the Packet Data Network Gateway (PGW) and a local
server close to the base stations. All parts of the radio and core
network are synchronized via GPS.

All cars were equipped with an identical Dedicated Mea-
surement Equipment (DME) for fine-grained mobile network
analytics. Moreover, two cars carried Commercial Off-The-
Shelf (COTS) mobile phones for comparison measurements.
Additionally, six COTS devices distributed over the cars solely
acted as background traffic data generators to populate an
otherwise empty network.

An overview of the captured data from all network nodes,
including the devices, the base stations, the core, and additional
sources, is given in Table I. Each DME consists of a small
form factor PC with an Intel Core i7-7500U CPU and a Linux-
based operating system. Moreover, it includes a (Sierra Wireless
AirPrime MC7430) LTE modem connected to a roof-mounted
2x2 Multiple-Input Multiple-Output (MIMO) car antenna. Ad-
ditionally, a roof-mounted GPS receiver (Garmin GPS 18x
LVC) connected to the DME provided accurate location and
time synchronization via Pulse Per Second (PPS)-signal. We
used the application Iperf (acting as a client) on all devices
inside the cars to generate data in Downlink (DL) or Uplink
(UL) direction, while several server instances are running
on the local server provided by MEC. Each device and the
local server logged the requested and achieved throughput,
respectively. The COTS measurement devices use the Android
API to capture Physical Layer measurements at a sampling
rate of 1Hz, including, e.g., Reference Signal Received Power
(RSRP), Reference Signal Received Quality (RSRQ), and the
connected cell, as well as the location. On the DME, the
open-source software MobileInsight [21] is used to capture all
modem-chipset-specific messages from the full LTE stack with
sampling intervals of up to 1ms (see Table I). All individual
incoming and outgoing packets are collected from the network
interface associated with the LTE modem. The data generators
only log the connected base station in addition to the Iperf logs.

Furthermore, data was also collected at the base stations and
the core network. The base stations generated the typical 15-
minute counters. Due to our holistic network control, we can
use our information about the connected cells and the through-

Cell 1,2 Cell 3,4 Cell 5,6 Cell 7,8 Cell 9,10
MEC, PGW

MME, HSS

Fig. 2. A simplified view of the measurement methodology used. Vehicles and
server generate marked traffic (green: low, blue: medium, orange: maximum
throughput). At the packet gateway the marked packets enable new features,
like current load at base stations with fine time granularity. All clocks in all
network nodes are synchronized.

put at the device side to compute, e.g., cell load and other
reconstructed real-time information for considerably shorter
sampling intervals of approximately 50ms. Additionally, we
capture MME traces from the core network, which, for exam-
ple, indicate handover procedures and paging. At the PGW, we
record all individual packets from all devices with time stamps,
enabling us to compute the one-way latency between DMEs
and the local server, among other metrics such as throughput
or consecutive packet losses at fine time granularity.

C. Measurement Scenarios

The measurement campaign focused on collecting datasets
in a way such that effects of specific measurement parameters
can be studied in-depth. In Figure 3, we show the parameters
studied. At a high level, measurement parameters are grouped
in five categories that include the configuration of base stations,
the data generation, the type of network connectivity, the
scenarios covered, and the mobility schemes. Three mobility
schemes were investigated: 1. leading car including a sequence
of cars driving in the same route with a fixed time lag to the
leading car, 2. moving and stationary schemes that included
two vehicles in the same cell where one vehicle is parked
and the second vehicle moving in and around the same cell,
3. stationary measurements where all cars were parked. The
data generation parameters included different patterns where
devices are competing to achieve maximum throughput from
the radio interface and also with a mixture of traffic types.
In total we executed 31 different measurement scenarios, with
each scenario having a specific focus (i.e. studying the effects of
one of the parameters by keeping all other parameters fixed). A
typical measurement scenario lasted between 40 to 60 minutes,
with the stationary measurements lasting typically a few hours.
To further reduce downtime between different measurement
scenarios, special software was developed enabling fast con-
figuration of the devices between the measurement runs.

IV. MEASUREMENT EVALUATION

This section covers our first results of this measurement
campaign. We have specifically focused on presenting and
discussing characteristics that can improve or hinder adoption
of ML algorithms for QoS prediction.
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Measurement Parameters

Base Station Configuration

Cell Load (Inter-
Cell Interference)

Data Generation

Data Rate (Low,
Medium & Maximum)

Packet Protocol
(TCP, UDP)

Network Connectivity

Vehicle-to-Network
(V2N / N2V)

Vehicle-to-Network-
to-Vehicle (V2N2V)

Scenarios

Rural

Suburban

Highway

Mobility Schemes

Stationary

Moving & Stationary

Leading Car

Fig. 3. The configurable parameters for the measurement campaign. Different combinations of the leaf nodes would result in different measurement configurations
per device. We selected a subset of these combinations so as to cover the entire spectrum of available configuration parameters.

TABLE I
OVERVIEW OF CAPTURED DATA FROM ALL NETWORK NODES.

Network Node Information Type Sampling Interval Features (Examples) QoS Metrics (Examples)

DME

Physical Layer (PHY) 10ms RSRP, RSRQ, CQI
Medium Access Control (MAC) 40ms Buffer Status Report (BSR)
Packet Data Convergence Protocol (PDCP) 0.5 s PDCP UL & DL Statistics
Radio Link Control (RLC) 45ms RLC transmissions & receptions
Radio Resource Control (RRC) Event-based OTA Packet Log
Location (via GPS) 1 s Longitude, Latitude, Speed
Packet Capturing Tool (using tcpdump) 1ms DL Throughput & Latency

COTS Physical Layer (PHY) 1 s RSRP, RSRQ
Measurement Tool (using Iperf) 1 s DL Throughput

Base Station Standard Operator Averages 15min Interference, Cell Load
Reconstructed Real-time Information 50ms Interference, Cell Load

Core Mobility Management Entity (MME) Traces Event-based Handover
Packet Capturing Tool (using tcpdump) 1ms UL Throughput & Latency

Database Weather & Traffic APIs Up to 1min Traffic Flow, Precipitation

A. Radio Environment

As a first analysis, we take a look at the radio environment
characteristics in the different measurements areas. In Figure 4,
we provide the Probability Density Functions (PDFs) of the
received RSRP values of the DME in vehicle 3, aggregated
over all measurement scenarios, and separated based on three
different radio environments: the highway, the suburban area
(Feucht), and the rural areas around the highway. The network
is deployed with a focus on providing great coverage to the
highway, that is visible by the higher RSRP values in Figure 4.
The RSRP values within the extensive coverage area enable
the support of very demanding use cases. The highway is a
relatively stable radio environment with line-of-sight (LOS)
conditions for the most of it, producing a more uniform type
of distribution. On the other hand, in the suburban city of
Feucht, there are richer radio dynamics that can be explained by
the continuous transition of LOS and non-line-of-sight (NLOS)
conditions. These are typically found in suburban environments
as vehicles travel between the building blocks. In the rural area,
the presence of trees partially block the LOS producing a much
smoother RSRP distribution compared to the one from the
suburban area. It is noticeable that the direction of the antennas
was optimized for highway coverage and not for the rural areas.
Nevertheless, we experienced good coverage.

Another interesting remark from Figure 4 is that, as described
in [22], the reporting range of an LTE receiver is defined from
-156 dBm to -44 dBm and that we could capture a big part
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Fig. 4. The PDFs of the received RSRP in three different radio environments,
where the RSRP captured in all measurement scenarios by the DME in vehicle
3 is considered.

of that range of values since we covered very diverse radio
environments. If a measurement campaign were carried out in
a fixed radio environment, it might only capture a small set of
different values. This limited range of input could cause issues
to the ML algorithm, which might not generalize well outside
of the range of the training input. Another point is that if the
measurement campaign does not cover the whole input range
of the features, there is a risk that non-linearities between the
input features are not successfully captured. We will come back
to this point in the next subsections.

B. Impact of Different Device Types

Since studies are typically conducted with similar types of
devices, there is a need to understand to which extent devices
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influence the characteristics of collected datasets. Diverse de-
vices have different radio transceivers, antenna positions and
sampling speeds. In Figure 5, we focus on two devices in the
same car that are measuring the RSRQ. The x axis here shows
the vehicle’s latitude. Due to the north-south orientation of
the A9 highway, the latitude coordinates 49.25 ° N to 49.40 ° N
roughly map into 397.5 km to 380.7 km on said highway. The
two devices are a DME and a COTS that are inside the car.
As expected, the COTS is not able to capture as high values as
the DME. The DME has an external antenna and thus receives
higher values, where RSRQ values larger than −5 dB typically
refer to excellent quality. Moreover, it is interesting that the
COTS does not capture the severe short time-scale deterioration
of the channel quality, even though it is inside the car. RSRQ
values below −12 dB indicate unusable signal quality. Such
limited captured dynamics might be a compound effect of
lower sampling speeds of the COTS and possibly, averaging
time windows that are typically employed in such devices.
This shows to some extent the importance of accounting for
specific device limitations, specifically for ML applications
that require higher accuracy. On the other hand, the COTS is
capturing quite precisely the average evolution of the RSRQ
values. The addition of an appropriate device error margin could
compensate for the loss of resolution that lower-cost consumer
devices typically suffer from.

Figure 6 gives another example of the impact of different
device types on the perceived radio environment. In this case,
we consider the Cumulative Density Functions (CDFs) of
measured RSRP values and compare identical device types in
two different vehicles for a leading car highway measurement.
We observe that COTSs have integer resolution (resulting in
a step function), while DMEs record Physical (PHY) layer
parameters at a higher resolution. Both vehicles capture similar
radio environments, as their CDF shapes are similar. However,
the DME curves are shifted due to factors such as different
antenna positions on different cars. In vehicle 4, the COTS
shows a comparable dynamic to that of the DMEs, while
vehicle 3 COTS measures RSRP values with a higher prob-
ability of poor signal quality compared to vehicle 3 DME.
The latter COTS was positioned on the car’s rear bench seat
compared to a window fixation of vehicle 4 COTS. Therefore,
the position of the device antennas influences the captured
RSRP measurements. Finally, Figure 6 confirms the earlier
insight of highway propagation scenarios being advantageous
for ML because of a single, steep slope around −95 dBm for
vehicle 3 DME and −105 dBm vehicle 4 DME, respectively.
In any case, we observe that different devices capture similar
dynamics, at least to some extent. This indeed hints at the reuse
of prior measurement data by other devices.

C. Temporal Analysis of Fading Effects

The design of the measurement campaign allows to augment
the QoS prediction with features measured by other vehicles.
To investigate the feasibility of this approach, we consider
the time series of PHY layer features measured by devices
in two vehicles travelling 3.05min apart on average. Figure 7
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Fig. 5. The RSRQ as captured from two different device types inside the
same vehicle. Dashed lines at −5 dB and −12 dB represent a typical operating
range.
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Fig. 6. Example for the impact of the devices on the measurement data.

shows the normalized cross-correlation between the Received
Signal Strength Indicator (RSSI), RSRP, and RSRQ time series
recorded by the two vehicles for each feature during one
highway measurement run of 1 h duration. As all time series are
resampled to intervals of 1 s, this analysis mainly captures the
effects of large-scale fading. It can be seen that all curves reach
their maximum at a temporal lag that corresponds to the average
lag between the vehicles’ trajectories. Similar effects can be
observed for all measurement runs with cars following the
same route. This indicates that measurements from preceding
vehicles can be valuable features for predicting the propagation
environment. The incorporation of such features and their
potential benefits to QoS prediction will be studied in future
publications.

While the large-scale fading shows to be correlated across
vehicles, we would like to get insights into the stationarity of
the small-scale fading. Figure 8 shows the median Kullback-
Leibler (KL) divergence between time-delayed vehicles on
the same route as in Figure 7, where we estimate mean-
adjusted RSRP distributions over intervals of 5 s using the
method described in [23]. This interval length is motivated
by average stationarity intervals in highway scenarios [13],
while guaranteeing sufficient data per density estimation. The
choice of the median stems from the fact that it is unaffected
by nonstationarities (if less than half of the distributions are
affected). We observe distinct minima at the average time lags
between the vehicles, with the effect being less pronounced for
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further-delayed vehicles. These results hint at fast-fading dis-
tributions remaining stationary or at least relatively unchanged
over several minutes in spatial regions.

D. Handover Characteristics

Within the context of Vehicle-to-Everything (V2X) com-
munication, many use cases require a very low latency in
the order of 50ms. We noticed that devices inside the same
vehicle perform handovers at different times, often delayed by
considerably more than 50ms. To study this effect in more
depth, we consider the device behavior per individual vehicle
(including DME, COTS, and traffic generators) and leverage
the core’s MME traces for millisecond resolution on inter-E-
UTRAN Node B (eNB) handovers perceptible by the core. We
define the handover lag as the time interval between the first
device switching to a new cell in the respective car and any
of the remaining devices’ handover occurrence. Specifically,
all time lags within a window of 10 s are counted. Figure 9
shows the handover lag histogram aggregated over all highway
measurement runs and vehicles, which has a mean value of
2.65 s. Moreover, 28% of handover events were excluded from
this statistic, as they exhibited ping-pong effects or occurred
isolated from the other devices in the same vehicle and
considered time window. In summary, for V2X applications,
handover procedures need to be considered towards robust QoS
prediction. If the same analysis were to be performed solely
based on end-device recordings, the COTS sampling interval
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Fig. 9. Histogram of highway inter-base station handover lags for handovers
within 10 s of the first handover in a vehicle (using the core’s MME traces).
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Fig. 10. An example on the collected PHY layer input features drift. The
increased cell load increases the experienced interference at the terminals.

of 1 s would introduce a Mean Absolute Error (MAE) of 1.15 s
per handover lag.

E. Impact of Cell Load

Studies on ML-based QoS prediction often assume stationary
input feature distributions [24], as this simplifies significantly
the application of ML algorithms. However, several parameters
of wireless networks are known to exhibit non-stationary distri-
butions [17]. For example, the cells are typically highly loaded
during peak-hours. The authors of [25] have shown that the
dependency between RSRQ and RSRP is not linear and that
their correlations change based on the received power. As high
cell load results in high interference from other cells, and thus
in an increased received power level, we expect the dependency
of RSRQ to RSRP to change over time in a live network.

Our measurement setup enables us to emulate cell load in
neighboring cells, which serves us to generate interference in an
active way. In Figure 10, we show that the relationship between
RSRQ and RSRP also changes as a function of the cell load.
In fact, we conducted two different measurement runs where
we kept all parameters stable and only adjusted the cell load.
As a result, it can be seen that the increased cell load shifts
the collected points of the two parameters considerably. This
can serve as a good example for the high temporal variation of
many of the interrelations of the input features collected from
radio environments. Still, more in-depth studies are needed to
characterize those in more detail. Other than that, we have
been able to confirm the non-linear behaviour between those
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two inputs features, which implies that a wide range of these
measurements must be considered in order to fully capture their
relationship. An ML-based algorithm should have access to
input features that can successfully track such characteristics
to provide robust predictions over long periods of time.

V. CONCLUSION

In this paper, we presented first insights of a multi-vehicle
End-to-End (E2E) measurement campaign showing that more
control of the measurement setup can reveal important charac-
teristics of the collected features. Such information will help to
shape the communication system of future transport systems
with vehicles. We showcased that dedicated and controlled
measurement campaigns are needed to capture the complex
inter-dependencies and characteristics of the radio environment.

We found that device type, placement, and sampling interval
impact measured features, which must be considered when
applying ML approaches. Using the same devices and configu-
ration for both training and testing, which is a common practice,
may lead to overly optimistic results. By using multiple vehi-
cles, each of them equipped with multiple devices, we could
identify several challenges and opportunities for QoS prediction
mechanisms. On the one hand, even when placed in the same
vehicle, devices tend to show different behaviors during the
handover procedure, and this uncertainty must be integrated into
E2E prediction mechanisms. On the other hand, our findings
indicate that data measured by preceding vehicles may be useful
to improve QoS prediction. We plan to investigate further how
this information can be incorporated. By capturing information
from all parts of the network, we are able to identify more
precisely the complex interrelations among features. This can
improve the accuracy of prediction mechanisms, as well as their
ability to generalize.

In the future, we plan to conduct more measurement cam-
paigns and provide insights on dataset characteristics for higher
frequency bands. Moreover, we plan to continue this in-depth
analysis, also integrating the QoS measurements and provide
new ML algorithms that can handle such characteristics of the
dataset.
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[14] J. Schmid, M. Schneider, A. HöB, and B. Schuller, “A deep learning
approach for location independent throughput prediction,” in Proc. IEEE
Int. Conf. on Connected Vehicles and Expo (ICCVE), Nov. 2019, pp. 1–5.
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